
Research Article
Using Convolutional Neural Network with Cheat Sheet and Data
Augmentation to Detect Breast Cancer in Mammograms

Saleem Z. Ramadan

Department of Industrial Engineering, German Jordanian University, Mushaqar, 11180 Amman-, Jordan

Correspondence should be addressed to Saleem Z. Ramadan; saleem.ramadan@gju.edu.jo

Received 8 May 2020; Revised 22 September 2020; Accepted 20 October 2020; Published 28 October 2020

Academic Editor: Maria E. Fantacci

Copyright © 2020 Saleem Z. Ramadan. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The American Cancer Society expected to diagnose 276,480 new cases of invasive breast cancer in the USA and 48,530 new cases of
noninvasive breast cancer among women in 2020. Early detection of breast cancer, followed by appropriate treatment, can reduce
the risk of death from this disease. DL through CNN can assist imaging specialists in classifying the mammograms accurately.
Accurate classification of mammograms using CNN needs a well-trained CNN by a large number of labeled mammograms.
Unfortunately, a large number of labeled mammograms are not always available. In this study, a novel procedure to aid imaging
specialists in detecting normal and abnormal mammograms has been proposed. The procedure supplied the designed CNN with
a cheat sheet for some classical attributes extracted from the ROI and an extra number of labeled mammograms through data
augmentation. The cheat sheet aided the CNN through encoding easy-to-recognize artificial patterns in the mammogram before
passing it to the CNN, and the data augmentation supported the CNN with more labeled data points. Fifteen runs of 4 different
modified datasets taken from the MIAS dataset were conducted and analyzed. The results showed that the cheat sheet, along
with data augmentation, enhanced CNN’s accuracy by at least 12.2% and enhanced the precision of the CNN by at least 2.2.
The mean accuracy, sensitivity, and specificity obtained using the proposed procedure were 92.1, 91.4, and 96.8, respectively,
while the average area under the ROC curve was 94.9.

1. Introduction

Breast cancer is the second cancer-related cause of deaths
among women worldwide [1]. It occurs when abnormal cells
grow in an uncontrolled manner causing proliferation of the
abnormal cells. This can cause death if the proliferation
forms metastasis and spread to the surrounding tissues or
other parts of the body. In this case, the tumor is called malig-
nant [2]. Breast cancer usually starts in the ducts or the
glands of the breast by forming lumps that can be detected
by mammograms [3]. According to the American Cancer
Society, it is expected to diagnose 276,480 new cases of inva-
sive breast cancer in the USA and 48,530 new cases of nonin-
vasive breast cancer among women and 2,620 invasive breast
cancer cases among men in 2020. The society expects that
about 42,170 women will die from breast cancer in this year.
Death rates have been steady in younger women since 2007.
They have continued to decrease in older women since 2013
thanks to a combination of factors such as enhancing early

detection capabilities through screening, increasing aware-
ness, and improving treatments. This reduction in rates
comes at the expense of increasing the demand for breast
imaging specialists. Computer-Aided Diagnosis (CAD) sys-
tems for breast cancer detection and diagnosis using mam-
mograms can help in reducing the pressure on breast
imaging specialists by assisting them in classifying mammo-
grams into normal or abnormal mammograms. A complete
review of the methods used in CAD for breast cancer detec-
tion using mammograms can be found in [4, 5]. Unfortu-
nately, a precise classification of a mammogram needs a
well-trained CAD system, and this requires a large number
of labeled mammograms to be used in training, which is
not always available. Data augmentation can help in this
respect by generating artificial data.

Recently, many researchers worked on breast cancer
detection in mammograms using deep learning and data
augmentation. Deep learning showed many advantages over
traditional machine learning and artificial intelligence [6–8].
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It is used widely in image classification and particularly in
medical imaging to detect various kinds of cancers and
tumors such as skin, brain, and breast cancers [9–11]. The
convolutional neural network was also used in breast cancer
detection. A complete technical review on CNN in breast
cancer can be found in [12]. Table 1 shows a summary of
some methods used in breast cancer detection using CNN.
The full version of this table can be found in Table 2 of [13].

The convolutional neural network, as a discriminative
supervised deep learning network, consists of many stacked
convolutional layers [6, 20]. Commonly, a discriminative
CNN consists of a convolutional layer, a pooling layer, a recti-
fied linear unit (ReLU), batch normalization, a softmax layer,
and a fully connected layer. These layers are aligned on the
top of each other to form a deep network that can accept 2D
or 3D images as the input [21]. One of the first deep networks
is AlexNet, which consists of 5 convolutional layers followed
by three fully connected layers and ending with a softmax
layer. Each of the first two convolutional layers is followed
by normalization and Max pooling layers, and a Max pooling
layer follows the last convolutional layer. AlexNet used the
ReLU activation function as ReLU converge faster than other
activation functions such as Sigmoid or Tanh [6]. Oxford Uni-
versity enhanced the AlexNet by replacing the large kernel size
of the filters in AlexNet by multiple 3 by 3 kernel-size filters to
enhance the receptive field because multiple nonlinear layers
increase the depth of the network, which enables the network
to learn more complex features at a lower cost. This architec-
ture is known as VGG, which stands for Visual Geometry
Group [22]. Unfortunately, VGG requires high computational
power as it requires high storage memory, and it requires high
computational time, which renders it inefficient. The architec-
ture of VGG-16 consists of 16 layers as follows: 13 convolu-
tional layers, 5 Max pooling layers, and 3 dense layers, which
sums up to 21 layers but only 16 weight layers. GoogleNet
introduced the inception model as it suggests that most of
the connections in the dense architecture are correlated and
hence can be eliminated [23]. It used three different convolu-
tions sizes, 5 by 5, 3 by 3, and a bottleneck 1 by 1, to reduce the
computational requirements and to enhance the receptive
field and to better grasp of small details. GoogleNet reduced
the total number of parameters. It introduced a global average
pooling convolutional layer as its last convolutional layer to
average the channel values across the 2D feature map.

Unlike GoogleNet, AlexNet, and VGG, Residual Network
(ResNet) is not a sequential network architecture, but it is a
network-in-network architecture. It uses microarchitectures
(building blocks along with pooling, convolution, etc. layers)
to build a macroarchitecture. ResNet was introduced to
overcome the degradation problem caused by increasing
the network depth [24]. ResNet introduced blockwise skip
connections in convolutional layers to construct a residual
module. ResNet reduced the vanishing gradient problem
via skipping one or more convolution layers, which allowed
ResNet to simplify deep networks during early training by
utilizing the activations of adjacent layers and expanding
and utilizing the skipped layers later in training. It was
argued in [25] that the performance of ResNet outperforms
the performance of VGG and GoogleNet.

The drawback of all the above networks and deep learn-
ing, in general, is their need to a large number of labeled
training samples to learn the patterns in the images and
hence classify the images correctly, which can be difficult
and costly. Unfortunately, in medical images, the amount
of available labeled training data is limited [26]. Training a
deep model by limited labeled training set results in overfit-
ting as the model tends to “memorize” the training set. To
overcome this issue, many researchers used 2D patch and
3D cube techniques to come up with more labeled training
samples [27, 28]. Some researchers used pretrained weights
and replaced the last layers by the new targeted class [29–
31]. Some other researchers used trained models with small
input sizes and then transformed the weights in the fully
connected layers into convolutional kernels [32]. Other
researchers used data augmentation to synthetically expand
the amount of data available for training through applying
several transformation forms to the actual data such as flip-
ping, rotating, jittering, and random scaling to the actual data
[33–37]. Data augmentation is a compelling method against
overfitting as the augmented data represents a complete set
of data points, which minimizes the variation between train-
ing and validation sets on the one hand and the testing set on
the other hand [38–45].

Data augmentation is not without drawbacks. In the
domain of medical images, data augmentation should be lim-
ited to minor changes even though it has been applied heavily
in the computer vision domain [46].

The artifacts and pectoral muscle in mammograms are
seen as distraction by the CNN classifier and hence must be
removed. Manual cropping is usually used to isolate the
regions of interest in the mammograms before feeding them
to the CNN as input images. Many researchers have auto-
mated this isolation processes. In [47], the authors used
genetic algorithms (GA) to determine the region of interest
(ROI) automatically using the area under the receiver operat-
ing characteristic curve (AUOC) as the fitness value. The
procedure used in [47] has three parts: artifact removal, pec-
toral muscle removal, and the best ROI determination. The
artifact portion removal procedure starts by dividing the
mammograms into LMLO and RMLO (left-sided and right-
sided mammograms, respectively) exploiting the location of
the continuous vertical white line and the black region
between the artifacts and the breast region. The pectoral
muscle removal procedure exploits the difference in the den-
sity between the pectoral muscle tissues and the rest of the
breast. The pectoral muscle tissues are denser than the rest
of the breast, and hence, the pectoral muscle tissues have
higher pixel values than the rest of the breast tissues. After
the pectoral muscle and the artifacts are removed, the proce-
dure in [47] draws an imaginary rectangle enclosing the
remaining part of the mammogram and records the length
of the longer side of the rectangle R. The imaginary rectangle
encloses the central part of the breast, which plays the role of
the initial region of interest (IROI). R along with the other
three parameters (a parameter for height H, a parameter
for width W, and a threshold value for the pixels CutVal)
are used in GA to determine the best ROI from the IROI
found earlier. Table 3 shows the chromosome representation
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used in this GA. The chromosome consists of 3 genes corre-
sponding to H, W, and CutVal parameters, respectively.

This procedure can be seen as a zooming procedure that
determines the most beneficial region in the mammogram
ROI. One should notice that the procedure used in [47] does
not require the ðx, yÞ location of the ROI or its radius to be
provided by the imaging specialist to determine the ROI.
Once the value of R and the values of H, W, and CutVal
are found, the ROI is determined automatically for the mam-
mogram and is available to be used in constructing easy-to-
recognize artificial patterns (cheat sheet data) for the mam-
mogram before it is passed to the CNN.

In this study, we propose a novel procedure to aid imag-
ing specialists in detecting normal and abnormal mammo-
grams. The procedure supplies the designed CNN with a
cheat sheet containing classical attributes extracted from
the ROI and increases the number of labeled mammograms
through data augmentation. The cheat sheet aids the CNN
through encoding easy-to-recognize artificial patterns in the
mammogram before passing it to the CNN, while the data
augmentation aids the CNN with a complete set of data
points. The rest of the paper is organized as follows. Section
2 presents the methodology, Section 3 describes the experi-
mentation, Section 4 discusses the results, and Section 5
concludes.

2. Methodology

Figure 1 shows the flow chart for the procedure used in this
paper to classify the mammograms. The procedure starts
with extracting the ROI from the mammogram. The ROI is

determined according to the procedure explained in [47]
and briefly reviewed in Introduction. The extraction of the
ROI is followed by taking an electronic biopsy from it, i.e.,
taking random pixels from the ROI. The results of the biopsy
and the radius of the ROI are encoded in the mammogram as
artificial patterns by drawing two frames of 10-pixel wide
(one inside the other) around the ROI. The pixels’ values
for the two frames are equal to the average pixels’ values of
the biopsy (outer frame) and the radius of the ROI (inner
frame). After encoding the attributes (biopsy and radius) in
mammograms, mammograms are split into two sets: testing
and training. Data augmentation is done on the training set
(by rotating the mammograms 90° and 180°) followed by
resizing the resulting mammograms into 100 × 100 before
the mammograms are input to the CNN for classification.

Figure 2 shows the ROI for mdb025 from which the elec-
tronic biopsy can be taken. ROI was determined by the proce-
dure mentioned in [47] and briefly explained in Introduction.

Figure 3 shows two augmented mammograms generated
from Figure 2 by rotating the mammogram 90° and 180°.

The average pixels’ values for the electronic biopsy taken
from the ROI of mdb025 mammogram is 196.9, and the radius
of the ROI is 75. Figure 4 shows the result of adding the two
frames to the ROI for the mdb025 mammogram in Figure 2
using the electronic biopsy and the radius of the ROI attributes.
Encoding the two attributes in the mammogram is considered

Table 1: Summary of some methods used in breast cancer detection using CNN [13].

Author Method Database Task Metric/value(s)

Dhungel et al. [14] Hybrid CNNa+level set INbreast Mass/classification
Accuracy (0.9) and
sensitivity (0.98)

Dhungel et al. [15] CRFc+CNN INbreast and DDSMd Lesion/segmentation Dice score (0.89)

Singh et al. [16]
Conditional generative

adversarial
network and CNN

DDSM and Reus Hospital
Spain dataset

Lesion/classification
Dice score (0.94) and
Jaccard index (0.89)

Agarwal and Carson [17] CNN (scratch based) DDSM Mass/calcifications Accuracy (0.90)

Gao et al. [18]
Shallow-deep convolutional

neural network
CNN+ResNet

Mayo Clinic Arizona,
INbreast

Lesion/classification
Accuracy (0.9) and

AUC (0.92)

Hagos et al. [19] Multi-input CNN
General Electric, Hologic,

Siemens
Lesion/classification

AUC (0.93) and
CPM (0.733)

Table 2: Summary of datasets used for the experimentations.

Acronym Description Size of the testing set Size of the training set Data augmentation for the training set Cheat sheet

OS Original set 100 222 No No

DA Data augmentation 100 666 Yes No

CS Cheat sheet 100 222 No Yes

DA/CS
Data augmentation
and cheat sheet

100 666 Yes Yes

Table 3: Chromosome representation.

H W CutVal
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as a cheat sheet to the CNN, which will aid the CNN with
more patterns and hence help it to classify the mammo-
grams better.

Figure 5 shows the ROI for mdb003 (mdb003 is a nor-
mal mammogram). One can see that the color of the outer
frame surrounding the ROI is very close to the color of the
region itself as there is no large difference between the pixels’
values of the ROI and the corresponding average. This can
be explained by the low variation in the pixels’ values in
the ROI for a normal mammogram, and hence, the color
of the outer frame is very close to the ROI in normal
mammograms.

After drawing frames for all of the mammograms, the
mammograms are resized to 100 × 100 images and are fed
to the CNN. Figure 6 shows the architecture of the sequential
CNN suggested in this study.

The performance of the procedure is measured using
Accuracy (AC), sensitivity (SE), specificity (SP), and the area

under the receiver operating characteristic curve (AUOC).
The accuracy is given as follows:

AC = TP + TN
TP + FP + TN + FN

, ð1Þ

where TP is the number of mammograms correctly diag-
nosed as positive, TN is the number of mammograms correctly
diagnosed as negative, FP is the number of mammograms
incorrectly diagnosed as positive, and FN is the number of
mammograms incorrectly diagnosed as negative.

The receiver operating characteristic curve (ROC) shows
SE on the y-axis and 1 − SP on the x-axis. SE is the propor-
tion of actual positive cases that are correctly identified

MIAS
Get ROI

Get
biopsy
and get
radius

Add
frames

Resize
images CNN

Data
augmenta

tion

Figure 1: Flow chart for the procedure used in this study to classify mammograms.

Figure 2: ROI for mdb025.

Figure 3: Data augmentation for the ROI for mdb025.

Figure 4: ROI for mdb025 after adding the two frames.

Figure 5: ROI for mdb003 after adding the two frames.

4 Computational and Mathematical Methods in Medicine



(true-positive percentage), and SP is the proportion of actual
negative cases that are correctly identified (1 − SP is the false-
positive percentage). SE and SP are given by the following
equations, respectively.

SE =
TP

TP + FN
,

SP = TN
FP + TN

:

ð2Þ

3. Experimentation

The MIAS database consists of 322 mediolateral oblique-
view mammograms from which 208 mammograms are nor-
mal, 63 mammograms are benign, and 51 mammograms are
malignant. For the training sets, the label 0 was given to both
the 208 normal and the 63 benign mammograms, whereas
the label 1 was given to the 51 malignant mammograms.

The 322 mammograms in the MIAS were randomly
divided into two groups, 222 mammograms for training
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Figure 6: Architecture of the suggested CNN.

Table 4: The performance measures obtained for the four sets.

sOS DA CS DA/CS
AC SE SP AUOC AC SE SP AUOC AC SE SP AUOC AC SE SP AUOC

75 68 78 81 79 84 80 80 92 87 95 91 93 94 97 91

85 69 78 84 69 66 73 82 90 86 89 89 92 92 97 94

75 81 75 75 83 84 82 75 91 88 90 94 89 89 97 93

80 77 80 77 77 80 86 84 86 90 92 92 94 91 96 94

69 68 81 79 78 68 85 78 89 86 89 88 92 92 98 95

77 76 77 74 75 75 83 77 89 88 90 89 91 92 96 98

80 75 83 73 78 82 81 70 87 89 93 93 94 92 95 98

77 80 80 78 76 73 79 88 90 90 91 86 93 88 96 94

81 72 76 81 69 73 83 80 89 90 91 92 94 91 98 97

74 71 77 81 72 76 83 82 85 91 95 92 90 92 99 94

80 72 74 76 77 68 75 79 89 88 93 87 93 92 96 95

77 77 77 77 83 86 77 76 87 90 93 94 91 90 94 94

77 70 78 77 76 70 80 82 89 88 92 86 94 93 97 95

85 84 79 82 72 74 82 74 90 88 90 93 93 90 98 98

77 75 84 73 75 63 86 79 85 86 91 88 89 93 98 94

Table 5: Statistical summary for the classification performance.

Set AC SE SP AUOC

OS
Average 77.9 74.3 78.5 77.9

StDev. 4.1 4.9 2.8 3.4

DA
Average 75.9 74.8 81 79.1

StDev. 4.2 7.1 3.8 4.4

CS
Average 88.5 88.3 91.6 90.3

StDev. 2.1 1.6 1.9 2.8

DA/CS
Average 92.1 91.4 96.8 94.9

StDev. 1.8 1.6 1.3 2.0
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Figure 7: The ROC curves for DA/CS.
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and 100 mammograms for testing. 25% of the mammograms
in the training set were randomly assigned for validation. Four
sets of experimentations were created, and 15 runs were carried
out for each set to evaluate the performance of the procedure
proposed in Figure 1. The first set (original set (OS)) includes
the following setup: 222 mammograms for training (25% vali-
dation) and 100mammograms for testing. The second set (data
augmented set (DA)) includes 15 runs according to the follow-
ing setup: 666 mammograms for training data, from which 444
were augmented by flipping the original 222mammograms 90°

and 180°. From the 666 training mammograms, 25% of them
were selected randomly for validation.Moreover, 100mammo-
grams were selected randomly from the original 322 mammo-
grams before data augmentation for testing.

The third set (no augmentation with cheat sheet (CS))
includes 222 mammograms (25% validation) with no data
augmentation but with a cheat sheet. 100 mammograms (with
cheat sheet) were selected randomly from the original 322
mammograms for testing. Both the electronic biopsy and the
ROI’s radius were encoded in each of the mammograms as
two frames surrounding the mammogram. The fourth set

(data augmentation and cheat sheet (DA/CS)) includes 666
mammograms for training data (25% validation) with data
augmentation and cheat sheet from which 444 mammograms
were augmented by flipping the original 222 mammograms
90° and 180°. The value of the electronic biopsy and the radius
of the ROI were encoded in each of the mammograms. 100
mammograms (with cheat sheet) were selected randomly
from the original 322 mammograms for testing. Table 2 sum-
marizes the four sets used in the experimentations.

4. Results and Discussion

Table 4 shows the performance measures, i.e., AC, SE, SP,
and AUOC, obtained for the four sets described in Experi-
mentation and listed in Table 2.

Table 5 shows a statistical summary of the classification
performance obtained for the four sets.

Figure 7 shows the ROC curves for the 15 runs obtained
for DA/CS set. The average area under the ROC curve for the
testing set of DA/CS is 94.9.

Probability plot OS, DA, CS, and DA/CS
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Figure 8: Probability plot for the accuracy obtained for OS, DA, CS, and DA/CS.

Table 6: Test of hypothesis for the ratio between two variances.

Hypotheses P value and 95% CI Conclusion

H01: the variance in the accuracy for CS equals the variance
in the accuracy for OS; σ2CS = σ2OS.
H11: the variance of accuracy for CS is less than the variance
of accuracy for OS; σ2CS < σ2OS.

0.008 [0.1 ∞)
There is statistical evidence that the variance in

the accuracy for CS is less than the variance in the
accuracy for OS by a factor of 0.1.

H02: the variance in the accuracy for DA equals the variance
in the accuracy for DA/CS; σ2DA/CS = σ2DA.
H12: the variance in the accuracy for DA is more than the
variance in the accuracy for DA/CS; σ2DA > σ2DA/CS.

0.001 [2.3 ∞)
There is statistical evidence that the variance in the
accuracy for DA is more than the variance in the

accuracy for DA/CS by a factor of 2.3.

H03: the variance in the accuracy for DA/CS equals the
variance in the accuracy for OS; σ2

DA/CS = σ2OS.
H13: the variance in the accuracy for OS is more than the
variance in the accuracy for DA/CS; σ2OS > σ2

DA/CS.

0.003 [2.2 ∞)
There is statistical evidence that the variance in the
accuracy for OS is more than the variance in the

accuracy for DA/CS by a factor of 2.2.
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Figure 8 shows the normal probability plots for the accu-
racy obtained for the four sets. The figure shows that the
accuracies are coming from normal distributions. Also, the
figure suggests that the variances in the accuracies for the sets
with no cheat sheet (OS and DA) are close to each other and
the variances in the accuracies for the sets with a cheat sheet
(CS and DA/CS) are also close to each other but with lower
values than those for OS and DA. Hence, the usage of a cheat
sheet reduces the variance in the accuracy, i.e., enhances the
precision of CNN.

Tests of hypotheses for the ratio between two variances
were carried out to verify the claim that the usage of the cheat
sheet enhances the precision of the CNN. The results are
shown in Table 6.

The P values for the different tests verify that the usage of
the cheat sheet alone enhances the precision of the CNN
(H01), and combining data augmentation with the cheat sheet
further enhances the precision of the CNN (H02 and H03).

Figure 9 shows qualitatively that the sets with a cheat
sheet (CS and DA/CS) outperform the sets without cheat
sheet (OS and DA) in their mean accuracy. Moreover, the fig-
ure shows that the mean accuracy of OS and DA is close to
each other while the mean accuracy of DA/CS is better than
the mean accuracy of CS.

Four sets of tests of hypotheses were conducted at a sig-
nificance level of 0.05 to test these claims. Table 7 shows
the results.

The P values confirm the claims and show that the mean
accuracy for the sets with a cheat sheet (CS and DA/CS) out-
performs the mean accuracy for the sets without cheat sheet
(OS and DA) (H04 and H05). The mean accuracy of OS
and DA is close to each other (H07), while the mean accuracy
of DA/CS is better than the mean accuracy of CS (H06). This
result shows that using a cheat sheet can enhance the accu-
racy of the CNN while using data augmentation alone does
not affect the accuracy of the CNN significantly. On the other

Table 7: Quantitative analysis for observations regarding Figure 7.

Hypotheses P value and 95% CI Conclusion

H04: the mean accuracy of CS equals the mean accuracy
of OS; μCS = μOS.
H14: the mean accuracy of CS is larger than the mean
accuracy of OS; μCS > μOS.

0.00 [8.56 ∞)
There is statistical evidence that the mean accuracy of

the CS set is larger than the mean accuracy of
OS by at least 8.56 percent.

H05: the mean accuracy of DA/CS equals the mean
accuracy of DA; μDA/CS = μDA.
H15: the mean accuracy of DA/CS is larger than the mean
accuracy of DA; μDA/CS > μDA.

0.00 [13.25 ∞)
There is statistical evidence that the mean accuracy of
the DA/CS set is larger than the mean accuracy of DA

by at least 13.25 percent.

H06: the mean accuracy of DA/CS equals the mean accuracy
of CS; μDA/CS = μCS.
H16: the mean accuracy of DA/CS is larger than the mean
accuracy of CS; μDA/CS > μCS.

0.00 [1.45 ∞)
There is statistical evidence that the mean accuracy of
the DA/CS set is larger than the mean accuracy of CS

by at least 1.45 percent.

H07: the mean accuracy of DA equals the mean accuracy
of OS; μDA = μOS.
H17: the mean accuracy of DA is larger than the mean
accuracy of OS; μDA > μOS.

0.9 [-4.56 ∞)
There is no statistical evidence that the mean accuracy of
the DA set is larger than the mean accuracy of OS.
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Figure 9: Boxplots for the four setup.
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hand, using data augmentation along with cheat sheet
enhances the accuracy of the CNN considerably.

5. Conclusions

In this study, we proposed a novel procedure to aid the
imaging specialists in detecting normal and abnormal mam-
mograms. We investigated the usefulness of aiding the CNN
with classical attributes, which were extracted from the ROI,
by encoding the attributes in the mammogram as artificial
patterns. Also, the effect of data augmentation on the perfor-
mance of CNN was investigated. Mammograms from the
MIAS dataset were used in this study to show the effective-
ness of the proposed procedure. The results showed that
including attributes extracted from ROI in the mammograms
as artificial patterns enhanced the accuracy and the precision
of the CNN. Moreover, the results showed that using data
augmentation alone did not affect the accuracy of the CNN
significantly while combining data augmentation with artifi-
cial patterns enhanced the accuracy and the precision of the
CNN considerably.
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